On the nature of voicing assimilation(s)

Wouter Jansen
Clinical Language Sciences
Leeds Metropolitan University
W. Jansen@leedsmet.ac.uk
http://www.kuvik.net/wjansen

March 15, 2006

Overview

- Review of 4 production experiments concerning regressive voicing assimilation (RVA) in Hungarian, English, and Dutch:
Experiment 1 Hungarian 2-way clusters Experiment 2 English 2-way clusters Experiment 3 Hungarian 3-way clusters Experiment 4 Dutch 3-way clusters
- Discussion of results in light of textbook accounts of RVA and (time permitting) recent instrumental work on sandhi processes

Motivation

- Phonological voicing in obstruents is realised by a complex of phonetic cues, including (the timing of) low frequency periodicity, duration, burst/frication intensity
- This implies that the phonetic reflexes of voicing assimilation should provide a good testbed for hypotheses surrounding the nature of sandhi processes
- ... and in particular for claims concerning
- categorical-phonological vs.
- coarticulatory models of sandhi processes

Motivation

- Two pieces of evidence suggesting voicing assimilation under word sandhi is at least rooted in coarticulation:

1. Descriptions in the literature of VA being restricted to phonetic voicing or otherwise applying as a low-level process
2. Assimilation to phonologically [+voice] plosives only seems to occur in languages where such plosives are (canonically) prevoiced

The experiments

- Rationale for choice of languages: cross-classification of RVA and Final Laryngeal Neutralisation, at least to standard phonological typologies (e.g. Lombardi 1995, 1999):

	Neutralisation	Assimilation
Dutch	Yes	Yes
(German)	Yes	No
Hungarian	No	Yes
English	No	No

Experiment 1

- Hungarian is usually described as exhibiting (categorical) RVA in all underlying [α voice][- α voice] sequences (cf. Siptár \& Törkenczy 2000):

/kJlop/+ /bon/	[kวlobion]	(a)
/fy:c/+ /bon/	[fy:fben]	'in (a) whistle'
/se:p/+ /zene:s/	[se:bzene:s]	'beautiful musician
/vok/+ /zene:s/	[vogzene:s]	'blind musician'
/rob/+ /to:l/	[ropto:l]	'from (a) prisoner'
/ari/+ /toil/	[a:cto: 1]	'from (a) bed'
/hob/+ /sifon/	[hכpsifon]	'cream-maker'
/hวd/+ /Jgreg/	[hวt5greg]	'army'

Experiment 1

- As part of a larger set of experiments, 4 native speakers of Hungarian produced two-way consonant clusters from written stimuli
- $\mathrm{C}_{1}-\mathrm{C}_{2}$ sequences were embedded at subject noun-verb boundaries in carrier sentences:
$\mathbf{C}_{1}=/ \mathrm{k}, \mathrm{g} /$
$\mathbf{C}_{2}=/ \mathrm{t}, \mathrm{d}, \mathrm{s}, \mathrm{z}, \mathrm{L}($ iquid)/
- $\mathrm{C}_{1} \mathrm{C}_{2}$ sequences realised with an internal pause and unsegementable sequences were excluded from subsequent analysis

Experiment 1: results

Experiment 1: results

Experiment 1: results

Experiment 1: results

- Means for C_{1} voicing, duration, and preceding vowel duration (all in ms):

$\mathrm{C}_{1} \mathrm{C}_{2}$	C_{1} voicing	C_{1} duration	N	V. duration	N
$/ \mathrm{g} /+/ \mathrm{z} /$	64	67	72	135	37
$/ \mathrm{k} /+/ \mathrm{z} /$	46	76	63	121	33
$/ \mathrm{g} /+/ \mathrm{d} /$	70	73	67	129	39
$/ \mathrm{k} /+/ \mathrm{d} /$	53	83	62	125	29
$/ \mathrm{g} /+/ \mathrm{s} /$	31	66	70	128	35
$/ \mathrm{k} /+/ \mathrm{s} /$	28	73	66	123	35
$/ \mathrm{g} /+/ \mathrm{t} /$	31	88	71	119	36
$/ \mathrm{k} /+/ \mathrm{t} /$	27	89	64	118	32
$/ \mathrm{g} /+/ \mathrm{L} /$	65	73	70	139	35
$/ \mathrm{k} /+/ \mathrm{L} /$	32	109	67	114	35

Experiment 1: results

- In the baseline environment, Hungarian /k, g/ seem to be distinguished by means of voicing, duration, and preceding vowel duration
- As expected, these phonetic distinctions are mostly (near-)neutralised in pre-obstruent contexts
- There is evidence of incomplete neutralisation of C_{1} voicing distinctions before a [+voice] C_{2}

Experiment 2

- Generative typologies of laryngeal phonology tend to cast (most varieties of) English as a language without RVA (under word sandhi: Lombardi (1999); Iverson \& Salmons (1999))
- Standard phonetic descriptions note 'phonetic' devoicing before [-voice] obstruents, affecting [+voice] fricatives (of weak forms) in particular (e.g., Gimson 1994

Experiment 2

- As part of a larger set of experiments, 4 native speakers of SB varieties of English produced two-way consonant clusters from written stimuli
- $\mathrm{C}_{1}-\mathrm{C}_{2}$ sequences were embedded at adjective-stressed noun boundaries in carrier sentences:
$\mathbf{C}_{1}=/ \mathrm{k}, \mathrm{g} /$
$\mathbf{C}_{2}=/ \mathrm{t}, \mathrm{d}, \mathrm{s}, \mathrm{z}, \mathrm{r} /$
- $\mathrm{C}_{1} \mathrm{C}_{2}$ sequences realised with an internal pause and unsegementable sequences were excluded from subsequent analysis

Experiment 2: results

Experiment 2: results

Experiment 2: results

Experiment 2: results

- Means for C_{1} voicing, duration, and preceding vowel duration:

$\mathrm{C}_{1} \mathrm{C}_{2}$	C_{1} voicing	C_{1} duration	V. duration	N
$/ \mathrm{g} /+/ \mathrm{z} /$	56	58	100	47
$/ \mathrm{k} /+/ \mathrm{z} /$	51	67	68	36
$/ \mathrm{g} /+/ \mathrm{d} /$	43	62	89	18
$/ \mathrm{k} /+/ \mathrm{d} /$	25	68	68	26
$/ \mathrm{g} /+/ \mathrm{s} /$	26	60	98	45
$/ \mathrm{k} /+/ \mathrm{s} /$	21	70	71	47
$/ \mathrm{g} /+/ \mathrm{t} /$	25	63	93	26
$/ \mathrm{k} /+/ \mathrm{t} /$	22	79	69	31
$/ \mathrm{g} /+/ \mathrm{r} /$	42	66	99	47
$/ \mathrm{k} /+/ \mathrm{r} /$	22	84	72	32

Experiment 2: results

- As expected, the English speakers exhibit phonetic devoicing in pre-[-voice] contexts
- Perhaps more surprisingly, the English speakers also exhibit some RVA before /z/ but not before /d/
- The absence of any assimilatory effects on the duration of the preceding vowel, on the other hand, is in accordance with phonetic descriptions of (the relevant varieties of) English

Experiment 3

- As part of a larger set of experiments, 4 native speakers of Hungarian were asked to produce the following consonant clusters from written stimuli:

1. /ps \# d/
2. /ps \#t/
3. /ps \# I/

- Stimulus design and experimental conditions were as per Experiment 1

Experiment 3: results

Experiment 3: results

- Means for $\mathrm{C}_{1}+\mathrm{C}_{2}$ voicing, duration and preceding vowel duration (all in ms):

$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	Voicing	Duration	V. duration	N
$/ \mathrm{psd} /$	45	136	76	47
$/ \mathrm{pst} /$	28	143	68	53
$/ \mathrm{psl} /$	29	146	69	52

Experiment 4

- Dutch is well known for neutralising the opposition between [+voice] and [-voice] obstruents word-finally:

UR	Plu	Citation	e	Glo
/xrap/	[xrapən]	[xrap]	[хrapjə]	joke
/krab/	[krabən]	[krap]	[krapjə]	crab
/ yrait/	[xraitən]	[χ rait]	[xraitjə]	fishbone
/ yraid/	[xra:dən]	[χ rait]	[xraitjə]	degree

Experiment 4

- In addition, Dutch tends to voice final obstruents followed by a [+voice] plosive:

UR
/ve:k/ + /dir/
/zand/ + /bank/
/vis/ + /diffja/
/reiz/ + /du:I/

Phonetic form
Gloss
mollusc
sand bank
common tern destination

Experiment 4

- As part of a larger set of experiments, 4 native speakers of Dutch produced the following consonant $\mathrm{C}_{1} \mathrm{C}+{ }_{2}+\mathrm{C}_{3}$ clusters from written stimuli:

1. /ps \# d/
2. /ps \#t/
3. /ps \# m/

- Stimuli consisted of /p/-final stems + possessive/adjectival $/ \mathrm{s} /$ followed by a stressed noun carrying $\mathrm{C}_{3} \mathrm{C}$

Experiment 4: results

Experiment 4: results

- Means for $\mathrm{C}_{1}+\mathrm{C}_{2}$ voicing, duration and preceding vowel duration (all in ms):

$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	Voicing	Duration	V. duration	N
$/ \mathrm{psd} /$	46	119	93	116
$/ \mathrm{pst} /$	21	146	93	116
$/ \mathrm{psm} /$	34	129	91	114

Experiment 3/4: results

- The Hungarian results are unremarkable: /ps/ assimilates to a following /d/ but is shows baseline behaviour before $/ \mathrm{t} /$, which seems to confirm the intuition that assimilation in (lexical) [-voice][-voice] sequences is necessarily vacuous.
- However, the Dutch material appears to show a tripartite pattern whereby /ps/ assimilates to both /t/ and d, and thus does seem to show assimilation in what most phonologists would analyse as a [-voice] + [-voice] sequence
- or, on an alternative interpretation, /ps/ assimilates to both /d/ and /m/

Discussion

- Voicing assimilation is the stock material of introductory phonology texts, and is typically cast as one or more of the following:
- Uniform across languages and grammatical contexts: the same (binary feature value-swapping) rule template applied in most circumstances
- Manner symmetric: laryngeal structure is typically assumed to be identical for plosives and fricatives
- [voice] symmetric or [+voice]-dominant asymmetric
- Categorical: obstruents acquiring [α voice] by assimilation are identical to underlyingly [α voice] sounds

Discussion

- The current work contributes to a growing body of evidence (also see, e.g., Burton \& Robblee (1997); Barry \& Teifour (1999)) for a richer and more complex concept of VA as (potentially):
- Heterogeneous across languages/environments
- Asymmetric with regard to manner (English /z/ vs. /d/ and to [voice] (incomplete neutralisation before Hungarian [+voice] obstruents)
- Non-categorical (Hungarian) or even cue-specific (English)
- Applicable in neutralised + underlying [-voice] sequences (Dutch)

References

Barry, M. \& Teifour, R. (1999). Temporal patterns in Arabic voicing assimilation. In Proceedings of the XIVth International Congress of Phonetic Sciences, volume 3 (pp. 2429-2432). San Francisco.

Burton, M. \& Robblee, K. (1997). A phonetic analysis of voicing assimilation in Russian. Journal of Phonetics, 25, 97-114.

Gimson, A. (1994). Gimson's Pronunciation of English. London: Arnold, 5th edition. Revised by A. Cruttenden.

Iverson, G. \& Salmons, J. (1999). Glottal spreading bias in Germanic. Linguistische Berichte, 178, 135-151.

Lombardi, L. (1995). Laryngeal neutralisation and syllable wellformedness. Natural Language and Linguistic Theory, 13, 39-74.

Lombardi, L. (1999). Positional faithfulness and voicing assimilation. Natural Language and Linguistic Theory, 1, 267-302.

Siptár, P. \& Törkenczy, M. (2000). The Phonology of Hungarian. Oxford: Clarendon.

