On the nature of voicing assimilation(s)

Wouter Jansen Clinical Language Sciences Leeds Metropolitan University W.Jansen@leedsmet.ac.uk http://www.kuvik.net/wjansen

March 15, 2006

On the nature of voicing assimilations – March 15, 2006

Overview

 Review of 4 production experiments concerning regressive voicing assimilation (RVA) in Hungarian, English, and Dutch:

Experiment 1 Hungarian 2–way clustersExperiment 2 English 2–way clustersExperiment 3 Hungarian 3–way clustersExperiment 4 Dutch 3–way clusters

 Discussion of results in light of textbook accounts of RVA and (time permitting) recent instrumental work on sandhi processes

Motivation

- Phonological voicing in obstruents is realised by a complex of phonetic cues, including (the timing of) low frequency periodicity, duration, burst/frication intensity
- This implies that the phonetic reflexes of voicing assimilation should provide a good testbed for hypotheses surrounding the nature of sandhi processes
- ...and in particular for claims concerning
 - categorical—phonological vs.
 - coarticulatory models of sandhi processes

Motivation

- Two pieces of evidence suggesting voicing assimilation under word sandhi is at least rooted in coarticulation:
 - 1. Descriptions in the literature of VA being restricted to phonetic voicing or otherwise applying as a low-level process
 - Assimilation to phonologically [+voice] plosives only seems to occur in languages where such plosives are (canonically) prevoiced

The experiments

 Rationale for choice of languages: cross-classification of RVA and Final Laryngeal Neutralisation, at least to standard phonological typologies (e.g. Lombardi 1995, 1999):

	Neutralisation	Assimilation
Dutch	Yes	Yes
(German)	Yes	No
Hungarian	No	Yes
English	No	No

 Hungarian is usually described as exhibiting (categorical) RVA in all underlying [αvoice][-αvoice] sequences (cf. Siptár & Törkenczy 2000):

/kɔlɔp/+ /bɔn/	[kɔlɔbːɔn]	'in (a) hat'
/fyːc/+ /bɔn/	[fyːɟbɛn]	'in (a) whistle'
/seːp/+ /zɛneːs/	[seːbzɛneːs]	'beautiful musician'
/vɔk/+ /zɛneːs/	[vɔɡzɛneːs]	'blind musician'
/rɔb/+ /toːl/	[roptoːl]	'from (a) prisoner'
/aːɟ/+ /toːl/	[aːctoːl]	'from (a) bed'
/hɔb/+ /sifon/	[hopsifon]	'cream-maker'
/hɔd/+ /ʃɛrɛg/	[hot∫ɛrɛg]	'army'

- As part of a larger set of experiments, 4 native speakers of Hungarian produced two—way consonant clusters from written stimuli
- C₁-C₂ sequences were embedded at subject noun-verb boundaries in carrier sentences:

 $C_1 = /k, g/$ $C_2 = /t, d, s, z, L(iquid)/$

 C₁C₂ sequences realised with an internal pause and unsegementable sequences were excluded from subsequent analysis

Duration of preceding (long) vowel (ms)

Means for C₁ voicing, duration, and preceding vowel duration (all in ms):

C_1C_2	C_1 voicing	C_1 duration	Ν	V. duration	Ν
/g/ + /z/	64	67	72	135	37
/k/ + /z/	46	76	63	121	33
/g/ + /d/	70	73	67	129	39
/k/ + /d/	53	83	62	125	29
/g/ + /s/	31	66	70	128	35
/k/ + /s/	28	73	66	123	35
/g/ + /t/	31	88	71	119	36
/k/ + /t/	27	89	64	118	32
/g/ + /L/	65	73	70	139	35
/k/ + /L/	32	109	67	114	35

- In the baseline environment, Hungarian /k, g/ seem to be distinguished by means of voicing, duration, and preceding vowel duration
- As expected, these phonetic distinctions are mostly (near—)neutralised in pre—obstruent contexts
- There is evidence of incomplete neutralisation of C₁ voicing distinctions before a [+voice] C₂

- Generative typologies of laryngeal phonology tend to cast (most varieties of) English as a language without RVA (under word sandhi: Lombardi (1999); Iverson & Salmons (1999))
- Standard phonetic descriptions note 'phonetic' devoicing before [-voice] obstruents, affecting [+voice] fricatives (of weak forms) in particular (e.g., Gimson 1994

- As part of a larger set of experiments, 4 native speakers of SB varieties of English produced two-way consonant clusters from written stimuli
- C₁-C₂ sequences were embedded at adjective-stressed noun boundaries in carrier sentences:

 ${f C}_1 = /k, g/$ ${f C}_2 = /t, d, s, z, r/$

 C₁C₂ sequences realised with an internal pause and unsegementable sequences were excluded from subsequent analysis

Preceding vowel duration (ms)

Means for C₁ voicing, duration, and preceding vowel duration:

C_1C_2	C ₁ voicing	C_1 duration	V. duration	Ν
(-/g/ + /z/)	56	58	100	47
/k/ + /z/	51	67	68	36
/g/ + /d/	43	62	89	18
/k/ + /d/	25	68	68	26
/g/ + /s/	26	60	98	45
/k/ + /s/	21	70	71	47
/g/ + /t/	25	63	93	26
/k/ + /t/	22	79	69	31
/g/ + /r/	42	66	99	47
/k/ + /r/	22	84	72	32

- As expected, the English speakers exhibit phonetic devoicing in pre-[-voice] contexts
- Perhaps more surprisingly, the English speakers also exhibit some RVA before /z/ but not before /d/
- The absence of any assimilatory effects on the duration of the preceding vowel, on the other hand, is in accordance with phonetic descriptions of (the relevant varieties of) English

- As part of a larger set of experiments, 4 native speakers of Hungarian were asked to produce the following consonant clusters from written stimuli:
 - 1. /ps # d/
 - 2. /ps # t/
 - 3. /ps # I/
- Stimulus design and experimental conditions were as per Experiment 1

Means for C₁ + C₂ voicing, duration and preceding vowel duration (all in ms):

$C_1C_2C_3$	Voicing	Duration	V. duration	Ν
/psd/	45	136	76	47
/pst/	28	143	68	53
/psl/	29	146	69	52

 Dutch is well known for neutralising the opposition between [+voice] and [-voice] obstruents word—finally:

UR	Plural	Citation	diminutive	Gloss
/xrap/	[xrapən]	[xrap]	[xrapjə]	joke
/krab/	[krabən]	[krap]	[krapjə]	crab
/ y raːt/	[<code>\chiraːtən]</code>	[<code>\chiraxt</code>]	[χr aːtjə]	fishbone
/yraːd/	[χraːdən]	[<code>\chiraxt</code>]	[x raːtjə]	degree

In addition, Dutch tends to voice final obstruents followed by a [+voice] plosive:

UR /ueik/ + /dir/ [ue^jigdia] /zand/ + /bank/ [zandbank] /vis/ + /dixfja/ [vizdifja] $/r\epsilon iz/ + /du I/$ [reizdul]

Phonetic form

Gloss mollusc sand bank common tern destination

- As part of a larger set of experiments, 4 native speakers of Dutch produced the following consonant C₁C + 2 + C₃ clusters from written stimuli:
 - 1. /ps # d/
 - 2. /ps # t/
 - **3.** /ps **#** m/
- Stimuli consisted of /p/–final stems + possessive/adjectival /s/ followed by a stressed noun carrying C₃C

Means for C₁ + C₂ voicing, duration and preceding vowel duration (all in ms):

$C_1C_2C_3$	Voicing	Duration	V. duration	Ν
/psd/	46	119	93	116
/pst/	21	146	93	116
/psm/	34	129	91	114

- The Hungarian results are unremarkable: /ps/ assimilates to a following /d/ but is shows baseline behaviour before /t/, which seems to confirm the intuition that assimilation in (lexical) [-voice][-voice] sequences is necessarily vacuous.
- However, the Dutch material appears to show a tripartite pattern whereby /ps/ assimilates to both /t/ and d, and thus does seem to show assimilation in what most phonologists would analyse as a [-voice] + [-voice] sequence
- or, on an alternative interpretation, /ps/ assimilates to both /d/ and /m/

Discussion

- Voicing assimilation is the stock material of introductory phonology texts, and is typically cast as one or more of the following:
 - Uniform across languages and grammatical contexts: the same (binary feature value—swapping) rule template applied in most circumstances
 - Manner symmetric: laryngeal structure is typically assumed to be identical for plosives and fricatives
 - [voice] symmetric or [+voice]-dominant asymmetric
 - Categorical: obstruents acquiring [αvoice] by assimilation are identical to underlyingly [αvoice] sounds

Discussion

- The current work contributes to a growing body of evidence (also see, e.g., Burton & Robblee (1997); Barry & Teifour (1999)) for a richer and more complex concept of VA as (potentially):
 - Heterogeneous across languages/environments
 - Asymmetric with regard to manner (English /z/ vs. /d/ and to [voice] (incomplete neutralisation before Hungarian [+voice] obstruents)
 - Non-categorical (Hungarian) or even cue-specific (English)
 - Applicable in neutralised + underlying [-voice] sequences (Dutch)

References

- Barry, M. & Teifour, R. (1999). Temporal patterns in Arabic voicing assimilation. In *Proceedings of the XIVth International Congress of Phonetic Sciences*, volume 3 (pp. 2429–2432). San Francisco.
- Burton, M. & Robblee, K. (1997). A phonetic analysis of voicing assimilation in Russian. *Journal of Phonetics*, 25, 97–114.
- Gimson, A. (1994). *Gimson's Pronunciation of English*. London: Arnold, 5th edition. Revised by A. Cruttenden.
- Iverson, G. & Salmons, J. (1999). Glottal spreading bias in Germanic. *Linguistische Berichte*, 178, 135–151.

Lombardi, L. (1995). Laryngeal neutralisation and syllable wellformedness. *Natural Language and Linguistic Theory*, 13, 39–74.

Lombardi, L. (1999). Positional faithfulness and voicing assimilation. *Natural Language and Linguistic Theory*, 1, 267–302.

Siptár, P. & Törkenczy, M. (2000). *The Phonology of Hungarian*. Oxford: Clarendon.